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1 Spectral Methods for Mixing Times and Cutoff

1.1 Spectral methods for bounding mixing times

1.1.1 Spectral gaps and relaxation times

Today, we will take a spectral approach to mixing. If P is the transition kernel (thought of
as a matrix), we want to relate the mixing time to the spectrum of P . We can show that

• 1 is an eigenvalue

• For any other eigenvalue λ, |λ| ≤ 1.

Example 1.1. Can there be an eigenvalue −1? If P corresponds to the random walk on
a bipartite graph, then −1 is also an eigenvalue.

Now, let’s specialize to reversible chains. The detailed balance equations are

π(x)P (x, y) = π(y)P (y, x).

If π is uniform, then P is a symmetric matrix. In general, let

Π =


π(1)

π(2)
. . .

π(n)

 .
Then if A = Π1/2PΠ−1/2,

A(x, y) =

√
π(x)P (x, y)√

π(y)
= A(y, x),

so P is similar to a symmetric matrix. This means that P admits real eigenvectors

1 = λ1 ≥ λ2 ≥ · · · ≥ λn.
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We also have an orthonormal basis fj such that

P t(x, y)

π(y)
=

n∑
j=1

λtjfj(x)fj(y).

Definition 1.1. The spectral gap of the chain is γ = 1 − λ2, where λ2 is the second
eigenvalue of P .

For complex matrices, we can look at 1−max|λ|<1 |λ|.

Definition 1.2. The relaxation time is trel := 1
γ .

Here is how we can bound tmix in terms of trel:

tmix(ε) ≤ trel log

(
1

επmin

)
, πmin = min

x∈Ω
π(x).

Using the second eigenfunction, we get the lower bound

tmix(ε ≥ (trel − 1) log

(
1

2ε

)
.

The second eigenvalue dictates the rate of mixing as

lim
t→∞

d(t)1/t = λ2,

but you usually need very large t for this to be sharp.

1.1.2 Bounds on spectral gap via contraction

Let Ω be equipped with a metric ρ, and assume that the Markov chain contracts with
respect to ρ: For any two states x, y ∈ Ω, if X0 = x and Y0 = y, then there is a coupling
of Markov chains such that

E[ρ(X1, Y1)] ≤ θρ(x, y) θ < 1.

In this case, |λ| < θ for all non-leading eigenvalues, so γ > 1− θ.

1.1.3 Using the variational characterization of eigenvalues

Consider the Dirichlet form, the quadratic form defined by

Σ(f) =
1

2

∑
x,y

|f(x)− f(y)|2π(x)p(x, y)

= f>(I − P )f.
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If we use the inner product

〈f, g〉 =
∑
x

f(x)g(x)π(x),

then

γ = inf
f⊥1

Σ(f)

‖f‖22
.

If you plug in any function here, you get an upper bound for γ and hence a lower bound
for the mixing time.

1.1.4 Spectral gap in relation to bottlenecks

We can also relate the spectral gap to expansion. Recall that when we discussed bottle-
necks, we had

θ(S, Sc) =
∑

x∈S,y∈Sc
π(x)P (x, y), φ(S) =

θ(S, Sc)

π(S)
.

The Markov chain version of Cheeger’s inequality is

φ2

2
< γ < 2φ.

Example 1.2. In the simple random walk on an n-cycle, the spectral gap is 1/n2, so the
lower bound on γ is sharp.

Example 1.3. In the random walk on the hypercube, the upper bound on γ is sharp.

1.1.5 Path coupling

Suppose the Markov chain contracts with respect to ρ and that ρ(x, y) ≥ 1 for all x 6= y.
Then

d(t) ≤ e−αt︸︷︷︸
θt

diam

for some α > 0. So if the diameter is n, then the time it takes to mix is like logn. In
applications, θ will depend on the system size.

Example 1.4. Suppose θ = 1− 1
n and the diameter is n. Then

d(t) ≤
(

1− 1

n

)t
n,

so t needs to be ≈ n log n to make d small.
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Example 1.5. Consider the Ising model on a graph of degree at most d (density ∝
e−β

∑
u∼v 1{σu 6=σv}). We claim that if β is low enough, then the Ising model contracts.

We need to come up with ρ and a coupling such that the Ising model contracts. If σ and
τ are two spin configurations, we can pick ρ(σ, τ) to be the Hamming distance, the
number of disagreements.

For the coupling, it suffices by the triangle inequality to consider σ and τ that only
differ at one vertex v.

Step 1: Pick the same vertex to update in both configurations.

Step 2: If the vertex is not a neighbor of v, update the two chains the same (this is
consistent with the marginal distributions of the Glauber dynamics).

Step 3: If the vertex is a neighbor of v, the distributions of the neighbors are different
between the chains. But this is like coupling two Bernoulli random variables. To
couple P1 ∼ Ber(p1) and P2 ∼ Ber(p2), sample a single U [0, 1] random variable U ;
Then let P1 = 1{U≤p1} and P2 = 1{U≤p2}.

If we update anything but a neighbor, the Hamming distance can only decrease. If we make
β small enough, then we can control the probability of the Hamming distance possibly
increasing when we pick a neighbor of v.

A similar argument shows a contraction for the simple exclusion process on the complete
graph of size n with n/2 particles.

1.2 Cutoff

Cutoff is when mixing occurs abruptly.
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Definition 1.3. A sequence of Markov chains indexed by n is said to exhibit cutoff if
there exists a time tn and a window size wn such that wn = o(tn) and

lim
α→−∞

lim inf
n

d(tn + αwn) = 1,

lim
α→−∞

lim sup
n

d(tn − αwn) = 0.

A related notion is precutoff, in which

sup
0<ε<1/2

lim sup
n

tmix(ε)

tmix(1− ε)
<∞.

Remark 1.1. Cutoff means that this quantity is equal to 1.

Example 1.6 (Random walk on a segment with speed). Suppose we walk on the segment
with drift to the right but with equal probability of staying or reflecting at the end:

The amount of time it takes to reach the right end is concentrated about 3n+O(
√
n).

Example 1.7 (Random walk on the hypercube). Last time, we used the coupon collecting
problem to couple this Markov chain. Our mixing time upper bound was n log n because
by that time, the two coupled chains have coalesced. In fact, this random walk exhibits
cutoff at 1

2n log n. This is because at time
√
n, we should have collected all but one of the

coupons;
√
n is the order of fluctuation of the stationary measure.

Recall that

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
.

If we have cutoff, then the left hand side should not depend much on ε, but the right hand
side blows up as ε→ 0. So if a Markov chain has cutoff or precutoff, the mixing time and
relaxation time should not be comparable.

A necessary condition for pre-curoff (and hence cutoff) is

trel︸︷︷︸
1/γ

= o(tmix).

This is the same as saying that
γtmix →∞.

The converse is not true in general but is expected to be true in most “natural” examples.
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Example 1.8. The random walk on the cycle does not exhibit cutoff. The mixing time is
O(n2), and the spectral gap is 1/n2.

In general, cutoff is a high-dimensional phenomenon which occurs when you have a
chain with many directions behaving independently.
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